Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 858(Pt 2): 159898, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343809

RESUMO

Biomass burning emits a large quantity of gaseous pollutants and aerosols into the atmosphere, which perturbs the regional and global climate and has significant impacts on air quality and human health. In order to understand the temporal and spatial distributions of biomass burning and its contribution to aerosol optical and radiative impacts, we examined fire emission data and its contribution to aerosol optical and radiative impacts over six major hot-spot continents/sub-continents across the globe, namely North-Central (NC) Africa, South America, US-Hawaii, South Asia, South East Asia, and Australia-New Zealand, using long-term satellites, ground-based and re-analysis data during 2000-2021. The selected six sites contributed ∼70% of total global fire data. The classification of biomass burning, such as pre, active, and post burning phases, was performed based on the Absorption Angstrom Exponent (AAE) estimated from 55 AERONET (AErosol RObotic NETwork) stations. The study found the highest contribution of fire count (55 %) during the active burning phase followed by post (36 %) and pre (8 %) burning phases. Such high fire counts were associated with high absorption aerosol optical depth (AAOD) during the active fire event. Strong dominance of fine and coarse mode mixed aerosols were also observed during active and post fire regimes. High AAOD and low Extinction Angstrom Exponent (EAE) over NC Africa during the fire events suggested presence of mineral dust mixed with biomass burning aerosols. Brightness temperature, fire radiative power and fire count were also dominated by the active burning followed by post and pre burning phases. The maximum heating rate of 3.15 K day-1 was observed during the active fire events. The heating rate profile shows clear variations for three different fire regimes with the highest value of 1.80 K day-1 at ∼750 hPa altitude during the active fire event.


Assuntos
Poluentes Atmosféricos , Incêndios , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Aerossóis/análise , Atmosfera , Estações do Ano
2.
Atmos Pollut Res ; 12(2): 225-242, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36915905

RESUMO

The current study examines the impact of the COVID-19 lockdown (25th March until May 17, 2020) period in particulate matter (PM) concentrations and air pollutants (NOx, SO2, CO, NH3, and O3) at 63 stations located at Delhi, Uttar Pradesh and Haryana states within the Delhi-NCR, India. Large average reductions are recorded between the stations in each state such as PM10 (-46 to -58%), PM2.5 (-49 to -55%), NO2 (-27 to -58%), NO (-54% to -59%), CO (-4 to -44%), NH3 (-2 to -38%), while a slight increase is observed for O3 (+4 to +6%) during the lockdown period compared to same periods in previous years. Furthermore, PM and air pollutants are significantly reduced during lockdown compared to the respective period in previous years, while a significant increase in pollution levels is observed after the re-opening of economy. The meteorological changes were rather marginal between the examined periods in order to justify such large reductions in pollution levels, which are mostly attributed to traffic-related pollutants (NOx, CO and road-dust PM). The WRF-CHIMERE model simulations reveal a remarkable reduction in PM2.5, NO2 and SO2 levels over whole Indian subcontinent and mostly over urban areas, due to limitation in emissions from the traffic and industrial sectors. A PM2.5 reduction of -48% was simulated in Delhi in great consistency with measurements, rendering the model as a powerful tool for simulations of lower pollution levels during lockdown period.

3.
Sci Total Environ ; 734: 139354, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32470663

RESUMO

Analysis of the climatology of aerosol properties is performed over Hanle (4500 m) and Merak (4310 m), two remote-background sites in the western trans-Himalayas, based on eleven years (2008-2018) of sun/sky radiometer (POM-01, Prede) measurements. The two sites present very similar atmospheric conditions and aerosol properties allowing us to examine them as continuous single-data series. The annual average aerosol optical depth at 500 nm (AOD500) is 0.04 ± 0.03, associated with an Ångström exponent (AE440-870) of 0.58 ± 0.35 and a single scattering albedo (SSA500) of 0.95 ± 0.05. AOD500 exhibits higher values in May (~0.07) and lower in winter (~0.03), while AE400-870 minimizes in spring, indicating influence by coarse-mode dust aerosols, either emitted regionally or long-range transported. The de-convolution of AOD500 into fine and coarse modes justifies the aerosol seasonality and sources, while the marginal diurnal variation in all aerosol properties reveals a weak influence from local sources, except for some few aerosol episodes. The aerosol-volume size distribution presents a mode value at ~10 µm with secondary peaks at accumulation (~ 2 µm) and fine modes (~0.03 µm) and low variability between the seasons. A classification of the aerosol types based on the fine-mode fraction (FMF) vs. SSA500 relationship reveals the dominance of aerosols in the FMF range of 0.4-0.6, characterized as mixed (39%), followed by fine aerosols with high scattering efficiency (26%), while particles related to dust contribute ~21%, with low fractions of fine-absorbing aerosols (~13%). The aerosol radiative forcing (ARF) estimates reveal a small cooling effect at the top of the atmosphere (-1.3 Wm-2), while at the surface, the ARF ranges from -2 Wm-2 to -6 Wm-2 on monthly basis. The monthly-mean atmospheric radiative forcing (~1 to 4 Wm-2) leads to heating rates of 0.04 to 0.13 K day-1. These ARF values are higher than the global averages and may cause climate implications over the trans-Himalayan region.

4.
Environ Sci Pollut Res Int ; 22(21): 16610-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26081773

RESUMO

Optical and micro-physical features of aerosol are reported using Skyradiometer (POM-01L, Prede, Japan) observations taken from a high-altitude station Merak, located in north-eastern Ladakh of the western trans-Himalayas region during January 2011 to December 2013. The observed daily mean aerosol optical depth (AOD, at 500 nm) at the site varied from 0.01 to 0.14. However, 75 % of the observed AOD lies below 0.05 during the study period. Seasonal peaks of AOD occurred in spring as 0.06 and minimum in winter as 0.03 which represents the aged background aerosols at the site. Yearly mean AOD at 500 nm is found to be around 0.04 and inter-annual variations of AOD is very small (nearly ±0.01). Angstrom exponent (a) varied seasonally from 0.73 in spring to 1.5 in autumn. About 30 % of the observed a lies below 0.8 which are the indicative for the presence of coarse-mode aerosols at the site. The station exhibits absorbing aerosol features which prominently occurred during spring and that may be attributed by the transported anthropogenic aerosol from Indo-Gangatic Plain (IGP). Results were well substantiated with the air mass back-trajectory analysis. Furthermore, seasonal mean of single scattering albedo (SSA at 500 nm) varied from of 0.94 to 0.98 and a general increasing trend is noticed from 400 to 870 nm wavelengths. These features are apparently regional characteristics of the site. Aerosol asymmetry factor (AS) decreases gradually from 400 to 870 nm and varied from 0.66 to 0.69 at 500 nm across the seasons. Dominance of desert-dust aerosols, associated by coarse mode, is indicated by tri-modal features of aerosol volume size distribution over the station during the entire seasons.


Assuntos
Poluentes Atmosféricos/análise , Aerossóis , Altitude , Poeira/análise , Monitoramento Ambiental , Humanos , Índia , Estações do Ano , Energia Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...